If it's not what You are looking for type in the equation solver your own equation and let us solve it.
45y^2+44y=0
a = 45; b = 44; c = 0;
Δ = b2-4ac
Δ = 442-4·45·0
Δ = 1936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1936}=44$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(44)-44}{2*45}=\frac{-88}{90} =-44/45 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(44)+44}{2*45}=\frac{0}{90} =0 $
| 4x-8=7.2+5x | | y=-1.8(212)-32 | | 6x-27=18 | | 2x10=44+8x | | -41=4-2(7x-5)+7x | | 1.75g=5.8 | | 2(x+1)+3(x+2)=5 | | 2x10=45+8x | | 102-2/3x=-36 | | 5/8k-1/2=1/3 | | -4/5y=24 | | x-7/6+x+6/5=7/6 | | 0.5x+1=0.3-5 | | 3(x+1=2x+7 | | 12m+1=1950 | | 5(x+4)+6=16 | | 8x+2+6x-4=180 | | (3x+1)+(x-11)+x=180 | | 10x-6x-12=6-12 | | x2=-441 | | 1.25c=5.5 | | 10=f/2+7 | | -18=6/5x | | -5(2x-4)-16=8(x+3)-6x | | -5y/4=-25 | | X2-3x=6x+10 | | x+3×x+1.5×x+180=455 | | 3r-4+2r+14=180 | | n/4=21 | | 8.50x+1.10=2.50x | | 7x+5=15-3x | | 0.008x(x)=1 |